Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1662694

ABSTRACT

Polyethyleneimine (PEI) induced immune responses were investigated in human bronchial epithelial (hBE) cells and mice. PEI rapidly induced ATP release from hBE cells and pretreatment with glutathione (GSH) blocked the response. PEI activated two conductive pathways, VDAC-1 and pannexin 1, which completely accounted for ATP efflux across the plasma membrane. Moreover, PEI increased intracellular Ca2+ concentration ([Ca2+]i), which was reduced by the pannexin 1 inhibitor, 10Panx (50 µM), the VDAC-1 inhibitor, DIDS (100 µM), and was nearly abolished by pretreatment with GSH (5 mM). The increase in [Ca2+]i involved Ca2+ uptake through two pathways, one blocked by oxidized ATP (oATP, 300 µM) and another that was blocked by the TRPV-1 antagonist A784168 (100 nM). PEI stimulation also increased IL-33 mRNA expression and protein secretion. In vivo experiments showed that acute (4.5 h) PEI exposure stimulated secretion of Th2 cytokines (IL-5 and IL-13) into bronchoalveolar lavage (BAL) fluid. Conjugation of PEI with ovalbumin also induced eosinophil recruitment and secretion of IL-5 and IL-13 into BAL fluid, which was inhibited in IL-33 receptor (ST2) deficient mice. In conclusion, PEI-induced oxidative stress stimulated type 2 immune responses by activating ATP-dependent Ca2+ uptake leading to IL-33 secretion, similar to allergens derived from Alternaria.


Subject(s)
Adenosine Triphosphate/immunology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Immunity/drug effects , Nanoparticles/administration & dosage , Oxidative Stress/drug effects , Polyethyleneimine/pharmacology , Allergens/immunology , Animals , Calcium/immunology , Cells, Cultured , Cytokines/immunology , Female , Humans , Immunity/immunology , Mice , Mice, Inbred BALB C , Oxidative Stress/immunology , RNA, Messenger/immunology , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology
2.
ACS Appl Mater Interfaces ; 14(4): 4882-4891, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1649372

ABSTRACT

Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is seriously threatening human health. Following SARS-CoV-2 infection, immune cell infiltration creates an inflammatory and oxidative microenvironment, which can cause pneumonia, severe acute respiratory syndrome, kidney failure, and even death. Clinically, a safe and effective treatment strategy remains to be established. Herein, a nano-bait strategy for inhibition of SARS-CoV-2 infection by redirecting viral attack while simultaneously relieving inflammation is developed. Specifically, the nano-bait was based on the exosome-sheathed polydopamine (PDA@Exosome) nanoparticles, which were generated by exocytosis of the PDA nanoparticles from H293T cells. In this approach, PDA@Exosome inherits from the source cells of H293T cells a surface display of ACE2 through pre-engineered expression. The resulting PDA@Exosome can compete with ACE2-expressing epithelial cells for S protein binding, in either the pre-exposure or post-exposure route. Moreover, relying on the ability of PDA to intercept and deactivate radical species, the PDA@Exosome can significantly attenuate the level of inflammatory cytokines by mediating oxidative stress, a major cause of organ injury. Due to its high trapping, multiple antioxidant ability, and good biocompatibility, the HACE2-exosome based nano-bait is a promising robust antiviral nanotherapeutics for the ongoing COVID-19 pandemic.


Subject(s)
Antioxidants/pharmacology , COVID-19 Drug Treatment , Pandemics , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cytokines/genetics , Epithelial Cells/drug effects , Epithelial Cells/virology , Exosomes/drug effects , Exosomes/genetics , Humans , SARS-CoV-2/pathogenicity , Virus Internalization/drug effects
3.
mBio ; 12(6): e0275621, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1494976

ABSTRACT

Outbreaks of emerging viral pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major medical challenge. There is a pressing need for antivirals that can be rapidly deployed to curb infection and dissemination. We determined the efficacy of interferon lambda-1 (IFN-λ) as a broad-spectrum antiviral agent to inhibit SARS-CoV-2 infection and reduce pathology in a mouse model of disease. IFN-λ significantly limited SARS-CoV-2 production in primary human bronchial epithelial cells in culture. Pretreatment of human lung cells with IFN-λ completely blocked infectious virus production, and treatment with IFN-λ at the time of infection inhibited virus production more than 10-fold. To interrogate the protective effects of IFN-λ in response to SARS-CoV-2 infection, transgenic mice expressing the human angiotensin-converting enzyme 2 (ACE-2) were tested. One dose of IFN-λ administered intranasally was found to reduce animal morbidity and mortality. Our study with SARS-CoV-2 also revealed a sex differential in disease outcome. Male mice had higher mortality, reflecting the more severe symptoms and mortality found in male patients infected with SARS-CoV-2. The results indicate that IFN-λ potentially can treat early stages of SARS-CoV-2 infection and decrease pathology, and this murine model can be used to investigate the sex differential documented in COVID-19. IMPORTANCE The COVID-19 pandemic has claimed millions of lives worldwide. In this report, we used a preclinical mouse model to investigate the prophylactic and therapeutic value of intranasal IFN-λ for this acute respiratory disease. Specific vaccines have been responsible for curbing the transmission of SARS-CoV-2 in developed nations. However, vaccines require time to generate and keep pace with antigenic variants. There is a need for broad-spectrum prophylactic and therapeutic agents to combat new emerging viral pathogens. Our mouse model suggests IFN-λ has clinical utility, and it reflects the well-documented finding that male COVID-19 patients manifest more severe symptoms and mortality. Understanding this sex bias is critical for considering therapeutic approaches to COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/therapy , Epithelial Cells/drug effects , Interferons/immunology , Interferons/pharmacology , SARS-CoV-2/immunology , Administration, Intranasal , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/pharmacology , Bronchi/cytology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/virology , Female , HEK293 Cells , Humans , Interferons/classification , Lung/drug effects , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Risk Factors , SARS-CoV-2/drug effects , Sex Factors
4.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1493345

ABSTRACT

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Subject(s)
Benzothiazoles/pharmacology , COVID-19 Drug Treatment , Oligopeptides/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Animals , Benzamidines/chemistry , Benzothiazoles/pharmacokinetics , COVID-19/genetics , COVID-19/virology , Cell Line , Drug Design , Epithelial Cells/drug effects , Epithelial Cells/virology , Esters/chemistry , Guanidines/chemistry , Humans , Lung/drug effects , Lung/virology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Oligopeptides/pharmacokinetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/drug effects , Serine Endopeptidases/ultrastructure , Small Molecule Libraries/pharmacology , Substrate Specificity/drug effects , Virus Internalization/drug effects
5.
J Virol ; 95(16): e0018721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486048

ABSTRACT

Subversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication. Results indicated that PEDV N induced Vero E6 cell cycle arrest at S-phase, which promoted viral replication (P < 0.05). S-phase arrest was dependent on the N protein nuclear localization signal S71NWHFYYLGTGPHADLRYRT90 and the interaction between N protein and p53. In the nucleus, the binding of N protein to p53 maintained consistently high-level expression of p53, which activated the p53-DREAM pathway. The key domain of the N protein interacting with p53 was revealed to be S171RGNSQNRGNNQGRGASQNRGGNN194 (NS171-N194), in which G183RG185 are core residues. NS171-N194 and G183RG185 were essential for N-induced S-phase arrest. Moreover, small molecular drugs targeting the NS171-N194 domain of the PEDV N protein were screened through molecular docking. Hyperoside could antagonize N protein-induced S-phase arrest by interfering with interaction between N protein and p53 and inhibit viral replication (P < 0.05). The above-described experiments were also validated in porcine intestinal cells, and data were in line with results in Vero E6 cells. Therefore, these results reveal the PEDV N protein interacts with p53 to activate the p53-DREAM pathway, and subsequently induces S-phase arrest to create a favorable environment for virus replication. These findings provide new insight into the PEDV-host interaction and the design of novel antiviral strategies against PEDV. IMPORTANCE Many viruses subvert the host cell cycle to create a cellular environment that promotes viral growth. PEDV, an emerging and reemerging coronavirus, has led to substantial economic loss in the global swine industry. Our study is the first to demonstrate that PEDV N-induced cell cycle arrest during the S-phase promotes viral replication. We identified a novel mechanism of PEDV N-induced S-phase arrest, where the binding of PEDV N protein to p53 maintains consistently high levels of p53 expression in the nucleus to mediate S-phase arrest by activating the p53-DREAM pathway. Furthermore, a small molecular compound, hyperoside, targeted the PEDV N protein, interfering with the interaction between the N protein and p53 and, importantly, inhibited PEDV replication by antagonizing cell cycle arrest. This study reveals a new mechanism of PEDV-host interaction and also provides a novel antiviral strategy for PEDV. These data provide a foundation for further research into coronavirus-host interactions.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Nucleocapsid Proteins/chemistry , Host-Pathogen Interactions/drug effects , Porcine epidemic diarrhea virus/drug effects , Quercetin/analogs & derivatives , Tumor Suppressor Protein p53/chemistry , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Binding Sites , Cell Line , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , Gene Expression Regulation , High-Throughput Screening Assays , Host-Pathogen Interactions/genetics , Molecular Docking Simulation , Nuclear Localization Signals , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Quercetin/chemistry , Quercetin/pharmacology , S Phase Cell Cycle Checkpoints/drug effects , S Phase Cell Cycle Checkpoints/genetics , Signal Transduction , Swine , Swine Diseases/drug therapy , Swine Diseases/genetics , Swine Diseases/metabolism , Swine Diseases/virology , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Vero Cells , Virus Replication/drug effects
6.
PLoS One ; 16(9): e0257784, 2021.
Article in English | MEDLINE | ID: covidwho-1440991

ABSTRACT

Drug repurposing has the potential to bring existing de-risked drugs for effective intervention in an ongoing pandemic-COVID-19 that has infected over 131 million, with 2.8 million people succumbing to the illness globally (as of April 04, 2021). We have used a novel `gene signature'-based drug repositioning strategy by applying widely accepted gene ranking algorithms to prioritize the FDA approved or under trial drugs. We mined publically available RNA sequencing (RNA-Seq) data using CLC Genomics Workbench 20 (QIAGEN) and identified 283 differentially expressed genes (FDR<0.05, log2FC>1) after a meta-analysis of three independent studies which were based on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection in primary human airway epithelial cells. Ingenuity Pathway Analysis (IPA) revealed that SARS-CoV-2 activated key canonical pathways and gene networks that intricately regulate general anti-viral as well as specific inflammatory pathways. Drug database, extracted from the Metacore and IPA, identified 15 drug targets (with information on COVID-19 pathogenesis) with 46 existing drugs as potential-novel candidates for repurposing for COVID-19 treatment. We found 35 novel drugs that inhibit targets (ALPL, CXCL8, and IL6) already in clinical trials for COVID-19. Also, we found 6 existing drugs against 4 potential anti-COVID-19 targets (CCL20, CSF3, CXCL1, CXCL10) that might have novel anti-COVID-19 indications. Finally, these drug targets were computationally prioritized based on gene ranking algorithms, which revealed CXCL10 as the common and strongest candidate with 2 existing drugs. Furthermore, the list of 283 SARS-CoV-2-associated proteins could be valuable not only as anti-COVID-19 targets but also useful for COVID-19 biomarker development.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning/methods , SARS-CoV-2/genetics , Antiviral Agents/therapeutic use , Drug Evaluation, Preclinical/methods , Epithelial Cells/drug effects , Epithelium/drug effects , Humans , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory System/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
7.
Nat Commun ; 12(1): 5536, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1428813

ABSTRACT

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs.


Subject(s)
Endoplasmic Reticulum Stress , SARS-CoV-2/physiology , Virus Replication/physiology , Animals , Autophagy/drug effects , Bronchi/pathology , COVID-19/pathology , COVID-19/virology , Cell Differentiation/drug effects , Cell Extracts , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 229E, Human/physiology , Down-Regulation/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum-Associated Degradation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/virology , Heat-Shock Proteins/metabolism , Humans , Macrolides/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Protein Biosynthesis/drug effects , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Unfolded Protein Response/drug effects , Vero Cells , Virus Replication/drug effects
8.
Sci Rep ; 11(1): 18085, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1402129

ABSTRACT

Effective vaccines are slowing the COVID-19 pandemic, but SARS-CoV-2 will likely remain an issue in the future making it important to have therapeutics to treat patients. There are few options for treating patients with COVID-19. We show probenecid potently blocks SARS-CoV-2 replication in mammalian cells and virus replication in a hamster model. Furthermore, we demonstrate that plasma concentrations up to 50-fold higher than the protein binding adjusted IC90 value are achievable for 24 h following a single oral dose. These data support the potential clinical utility of probenecid to control SARS-CoV-2 infection in humans.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Lung/drug effects , Probenecid/pharmacology , SARS-CoV-2/physiology , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Epithelial Cells/virology , Humans , Lung/virology , Vero Cells
9.
Respir Care ; 66(1): 113-119, 2021 01.
Article in English | MEDLINE | ID: covidwho-1389654

ABSTRACT

BACKGROUND: Low airway surface pH is associated with many airway diseases, impairs antimicrobial host defense, and worsens airway inflammation. Inhaled Optate is designed to safely raise airway surface pH and is well tolerated in humans. Raising intracellular pH partially prevents activation of SARS-CoV-2 in primary normal human airway epithelial (NHAE) cells, decreasing viral replication by several mechanisms. METHODS: We grew primary NHAE cells from healthy subjects, infected them with SARS-CoV-2 (isolate USA-WA1/2020), and used clinical Optate at concentrations used in humans in vivo to determine whether Optate would prevent viral infection and replication. Cells were pretreated with Optate or placebo prior to infection (multiplicity of infection = 1), and viral replication was determined with plaque assay and nucleocapsid (N) protein levels. Healthy human subjects also inhaled Optate as part of a Phase 2a safety trial. RESULTS: Optate almost completely prevented viral replication at each time point between 24 h and 120 h, relative to placebo, on both plaque assay and N protein expression (P < .001). Mechanistically, Optate inhibited expression of major endosomal trafficking genes and raised NHAE intracellular pH. Optate had no effect on NHAE cell viability at any time point. Inhaled Optate was well tolerated in 10 normal subjects, with no change in lung function, vital signs, or oxygenation. CONCLUSIONS: Inhaled Optate may be well suited for a clinical trial in patients with pulmonary SARS-CoV-2 infection. However, it is vitally important for patient safety that formulations designed for inhalation with regard to pH, isotonicity, and osmolality be used. An inhalational treatment that safely prevents SARS-CoV-2 viral replication could be helpful for treating patients with pulmonary SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Epithelial Cells/drug effects , Glycine/pharmacology , Isotonic Solutions/pharmacology , Lung/drug effects , SARS-CoV-2 , Virus Replication/drug effects , Administration, Inhalation , Antiviral Agents/administration & dosage , Cells, Cultured/drug effects , Glycine/administration & dosage , Healthy Volunteers , Humans , Hydrogen-Ion Concentration/drug effects , Isotonic Solutions/administration & dosage
10.
Cytokine ; 140: 155430, 2021 04.
Article in English | MEDLINE | ID: covidwho-1385381

ABSTRACT

In vitro interferon (IFN)α treatment of primary human upper airway basal cells has been shown to drive ACE2 expression, the receptor of SARS-CoV-2. The protease furin is also involved in mediating SARS-CoV-2 and other viral infections, although its association with early IFN response has not been evaluated yet. In order to assess the in vivo relationship between ACE2 and furin expression and the IFN response in nasopharyngeal cells, we first examined ACE2 and furin levels and their correlation with the well-known marker of IFNs' activation, ISG15, in children (n = 59) and adults (n = 48), during respiratory diseases not caused by SARS-CoV-2. A strong positive correlation was found between ACE2 expression, but not of furin, and ISG15 in all patients analyzed. In addition, type I and III IFN stimulation experiments were performed to examine the IFN-mediated activation of ACE2 isoforms (full-length and truncated) and furin in epithelial cell lines. Following all the IFNs treatments, only the truncated ACE2 levels, were upregulated significantly in the A549 and Calu3 cells, in particular by type I IFNs. If confirmed in vivo following IFNs' activation, the induction of the truncated ACE2 isoform only would not enhance the risk of SARS-CoV-2 infection in the respiratory tract.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , Epithelial Cells/drug effects , Gene Expression/drug effects , Interferons/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adult , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/virology , Cell Line, Tumor , Child , Cytokines/genetics , Epithelial Cells/metabolism , Humans , Interferons/metabolism , Lung/cytology , Middle Aged , SARS-CoV-2/physiology , Ubiquitins/genetics
11.
Antiviral Res ; 194: 105162, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347485

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected over 200 million people throughout the world as of August 2021. There are currently no approved treatments providing high chance of recovery from a severe case of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, and the beneficial effect of Remdesivir and passive immunization therapies may only be seen when administered early on disease onset. The emergence of variants is also raising concerns regarding the efficacy of antibody therapies, antivirals, and vaccines. Therefore, there is still a need to develop new antivirals. Here, we investigated the suitability of primary human epithelial cells from the trachea/bronchia (NHBE) and small airway (SAEC) as lung models of SARS-CoV-2 infection to determine, whether the microbicide polyphenylene carboxymethylene (PPCM) has antiviral activity against SARS-CoV-2. Both NHBE and SAEC expressed proteins required for virus entry in lung epithelial cells. However, these cells were only low to moderately permissive to SARS-CoV-2 as titers increased at best by 2.5 log10 during an 8-day kinetic. Levels of replication in SAEC, unlike in NHBE, were consistent with data from other studies using human normal tissues or air-liquid interface cultures, suggesting that SAEC may be more relevant to use than NHBE for drug screening. PPCM EC50 against SARS-CoV-2 was between 32 and 132 µg/ml with a selectivity index between 12 and 41, depending on the cell type and the infective dose used. PPCM doses were consistent with those previously showing effect against other human viruses. Finally, PPCM antiviral effect observed in SAEC was in line with reduction of inflammatory markers observed overly expressed in severe COVID-19 patients. Altogether, our data support the fact that PPCM should be further evaluated in vivo for toxicity and antiviral activity against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/virology , Polymers/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , COVID-19/prevention & control , COVID-19/transmission , Epithelial Cells/drug effects , Humans , Lung/cytology , Lung/virology , Polymers/chemistry , Proof of Concept Study , SARS-CoV-2/genetics , Virus Internalization/drug effects , Virus Replication/drug effects
13.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1323266

ABSTRACT

Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air-liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.


Subject(s)
Airway Remodeling/drug effects , Alveolar Epithelial Cells/drug effects , Cigarette Smoking/adverse effects , Epithelial Cells/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Cell Differentiation/drug effects , Cells, Cultured , Cigarette Smoking/metabolism , Epithelial Cells/drug effects , Humans , Neoplasms, Basal Cell/metabolism , Primary Cell Culture , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Smoke , Smoking/adverse effects , Smoking/metabolism
14.
Immunol Lett ; 237: 33-41, 2021 09.
Article in English | MEDLINE | ID: covidwho-1293862

ABSTRACT

OBJECTIVE: In this study, we focused on the interaction between SARS-CoV-2 and host Type I Interferon (IFN) response, so as to identify whether IFN effects could be influenced by the products of SARS-CoV-2. METHODS: All the structural and non-structural proteins of SARS-CoV-2 were transfected and overexpressed in the bronchial epithelial cell line BEAS-2B respectively, and typical antiviral IFN-stimulated gene (ISG) ISG15 expression was detected by qRT-PCR. RNA-seq based transcriptome analysis was performed between control and Spike (S) protein-overexpressed BEAS-2B cells. The expression of ACE2 and IFN effector JAK-STAT signaling activation were detected in control and S protein-overexpressed BEAS-2B cells by qRT-PCR or/and Western blot respectively. The interaction between S protein with STAT1 and STAT2, and the association between JAK1 with downstream STAT1 and STAT2 were measured in BEAS-2B cells by co-immunoprecipitation (co-IP). RESULTS: S protein could activate IFN effects and downstream ISGs expression. By transcriptome analysis, overexpression of S protein induced a set of genes expression, including series of ISGs and the SARS-CoV-2 receptor ACE2. Mechanistically, S protein enhanced the association between the upstream JAK1 and downstream STAT1 and STAT2, so as to promote STAT1 and STAT2 phosphorylation and ACE2 expression. CONCLUSION: SARS-CoV-2 S protein enhances ACE2 expression via facilitating IFN effects, which may help its infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Bronchi/drug effects , COVID-19/virology , Epithelial Cells/drug effects , Interferon alpha-2/pharmacology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Bronchi/enzymology , Bronchi/virology , COVID-19/enzymology , Cytokines/genetics , Cytokines/metabolism , Epithelial Cells/enzymology , Epithelial Cells/virology , HEK293 Cells , Host-Pathogen Interactions , Humans , Janus Kinase 1/metabolism , Phosphorylation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Ubiquitins/genetics , Ubiquitins/metabolism , Up-Regulation
15.
Viruses ; 13(7)2021 06 25.
Article in English | MEDLINE | ID: covidwho-1289021

ABSTRACT

The current COVID-19 pandemic has highlighted the urgent need to develop effective therapeutic strategies. We evaluated the in vitro antiviral effect against SARS-CoV-2 of a hepatitis B virus (HBV) hexamer peptide, Poly6, which is capable of eliciting an antiviral effect against human immunodeficiency virus -1 (HIV-1), as a novel HIV-1 integrase inhibitor, and a strong anticancer immune response in an IFN-I-dependent manner, as a novel potential adjuvant in anticancer immunotherapy. Here, we report that Poly6 exerts an anti-SARS-CoV-2 effect, with an estimated 50% inhibitory concentration of 2.617 µM, in the human bronchial epithelial cell line, Calu-3 but not in Vero-E6 cells, which are deficient in type 1 interferon (IFN-I) signaling. We proved via assays based on mRNA profiles, inhibitors, or blocking antibodies that Poly6 can exert an anti-SARS-CoV-2 effect in an IFN-I-dependent manner. We also found that Poly6 inhibits IL-6 production enhanced by SARS-CoV-2 in infected Calu-3 cells at both the transcription and the translation levels, mediated via IL-10 induction in an IFN-I-dependent manner. These results indicate the feasibility of Poly6 as an IFN-I-inducing COVID-19 drug with potent antiviral and anti-inflammatory activities.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Hepatitis B virus/chemistry , Interferon Type I/immunology , Peptides/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Bronchi/cytology , Bronchi/virology , Chlorocebus aethiops , Epithelial Cells/immunology , Epithelial Cells/virology , Hepatitis B virus/genetics , Humans , Lung/cytology , Lung/virology , Peptides/immunology , SARS-CoV-2/immunology , Vero Cells
16.
Viruses ; 13(6)2021 06 21.
Article in English | MEDLINE | ID: covidwho-1287275

ABSTRACT

The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. In a recent study, we demonstrated that EPAC, but not PKA, is a promising therapeutic target to regulate respiratory syncytial virus (RSV) replication and its associated inflammation. In mammals, there are two isoforms of EPAC-EPAC1 and EPAC2. Unlike other viruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola virus, which use EPAC1 to regulate viral replication, RSV uses EPAC2 to control its replication and associated cytokine/chemokine responses. To determine whether EPAC2 protein has a broad impact on other respiratory viral infections, we used an EPAC2-specific inhibitor, MAY0132, to examine the functions of EPAC2 in human metapneumovirus (HMPV) and adenovirus (AdV) infections. HMPV is a negative-sense single-stranded RNA virus belonging to the family Pneumoviridae, which also includes RSV, while AdV is a double-stranded DNA virus. Treatment with an EPAC1-specific inhibitor was also included to investigate the impact of EPAC1 on these two viruses. We found that the replication of HMPV, AdV, and RSV and the viral-induced immune mediators are significantly impaired by MAY0132, while an EPAC1-specific inhibitor, CE3F4, does not impact or slightly impacts, demonstrating that EPAC2 could serve as a novel common therapeutic target to control these viruses, all of which do not have effective treatment and prevention strategies.


Subject(s)
Adenoviridae/physiology , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Metapneumovirus/physiology , Respiratory Syncytial Virus, Human/physiology , Virus Replication , A549 Cells , Cell Line , Chemokines/immunology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , HEK293 Cells , Humans , Quinolines/pharmacology
17.
Am J Pathol ; 191(7): 1193-1208, 2021 07.
Article in English | MEDLINE | ID: covidwho-1283899

ABSTRACT

Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-ß1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Furin/metabolism , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Animals , Bleomycin , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lung/metabolism , Lung/pathology , Male , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Treatment Outcome
18.
Sci Rep ; 11(1): 12787, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1275960

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting the most vulnerable in society, triggering a public health crisis and economic collapse around the world. Effective treatments to mitigate this viral infection are needed. Since the eye is a route of virus entrance, we use an in vivo rat model of corneal inflammation as well as human corneal epithelial cells (HCEC) in culture challenged with IFNγ as models of the eye surface to study this issue. We explore ways to block the receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein to angiotensin-converting enzyme 2 (ACE2). We found that the lipid mediators, elovanoid (ELV)-N32 or Resolvin D6-isomer (RvD6i) decreased the expression of the ACE2 receptor, furin, and integrins in damaged corneas or IFNγ-stimulated HCEC. There was also a concomitant decrease in the binding of Spike RBD with the lipid treatments. Using RNA-seq analysis, we uncovered that the lipid mediators also attenuated the expression of pro-inflammatoy cytokines participating in hyper-inflammation and senescence programming. Thus, the bioactivity of these lipid mediators will contribute to open therapeutic avenues to counteract virus attachment and entrance to the body.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Cellular Senescence/drug effects , Corneal Injuries/metabolism , Cytokines/metabolism , Docosahexaenoic Acids/analogs & derivatives , Docosahexaenoic Acids/pharmacology , Drug Discovery/methods , Protein Domains , Signal Transduction/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium, Corneal/cytology , Humans , Lipoxins/pharmacology , Male , Protein Binding , Rats , Rats, Sprague-Dawley , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Attachment/drug effects , Virus Internalization/drug effects
19.
Cells ; 10(6)2021 06 07.
Article in English | MEDLINE | ID: covidwho-1259431

ABSTRACT

Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested, however, that receptors other than ACE2 may be involved in virus binding. We have investigated the interactions of recombinant versions of the spike protein with human epithelial cell lines that express low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD required the presence of high levels of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage site might also be a heparin-binding site and potentially important for interactions with host cells. The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate, also inhibited the binding of spike protein, indicating that it might bind to one or both of these glycosaminoglycans on the surface of target cells.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Epithelial Cells/metabolism , Heparin/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites/drug effects , Binding Sites/genetics , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Dermatan Sulfate/pharmacology , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/virology , Glycosaminoglycans/pharmacology , HEK293 Cells , HaCaT Cells , Heparitin Sulfate/pharmacology , Humans , Protein Binding/drug effects , Protein Binding/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells , Virus Internalization/drug effects
20.
Sci Rep ; 11(1): 371, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-1242035

ABSTRACT

Vaccines and therapeutics using in vitro transcribed mRNA hold enormous potential for human and veterinary medicine. Transfection agents are widely considered to be necessary to protect mRNA and enhance transfection, but they add expense and raise concerns regarding quality control and safety. We found that such complex mRNA delivery systems can be avoided when transfecting epithelial cells by aerosolizing the mRNA into micron-sized droplets. In an equine in vivo model, we demonstrated that the translation of mRNA into a functional protein did not depend on the addition of a polyethylenimine (PEI)-derived transfection agent. We were able to safely and effectively transfect the bronchial epithelium of foals using naked mRNA (i.e., mRNA formulated in a sodium citrate buffer without a delivery vehicle). Endoscopic examination of the bronchial tree and histology of mucosal biopsies indicated no gross or microscopic adverse effects of the transfection. Our data suggest that mRNA administered by an atomization device eliminates the need for chemical transfection agents, which can reduce the cost and the safety risks of delivering mRNA to the respiratory tract of animals and humans.


Subject(s)
Horses , Nasal Sprays , RNA, Messenger/administration & dosage , Respiratory Mucosa , Animals , Animals, Newborn , Cells, Cultured , Drug Carriers/administration & dosage , Drug Carriers/adverse effects , Drug Carriers/pharmacokinetics , Drug Delivery Systems/adverse effects , Drug Delivery Systems/methods , Drug Delivery Systems/veterinary , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lung/drug effects , Lung/metabolism , Nebulizers and Vaporizers/veterinary , Polyethyleneimine/administration & dosage , Polyethyleneimine/chemistry , RNA, Messenger/adverse effects , RNA, Messenger/pharmacokinetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Transcription, Genetic , Transfection/methods , Transfection/veterinary , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects , Vaccines, DNA/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL